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1.  INTRODUCTION 

In conjunction with experimental studies of radiation-induced con- 
ductivity in dielectric materials being conducted at the Harry Diamond 
Laboratories, theoretical efforts have been directed toward describing 
the dynamics of the recomoirition processes governing the decay of the 
ionization produced in condensed media by irradiation. This report 
presents results of calculations of the time-dependent neutralization 
of an isolated electron-ion pair in a condensed dielectric medium for 
values of time ranging from times shorter than can presently be mea- 
sured experimentally to those earliest measureable. These initial 
recombination processes determine the ultimate yield of quasi-free 
charge carriers present at times accessible to experimental measurement. 
The present work considers the neutralization of isolated electron-ion 
pairs in a condensed dielectric medium for tvo cases:  (1) no chemical 
impurities acting as charge scavengers are present; (2) charge scavengers 
are present. Structural effects characteristic of the solid state are 
neglected. Thus, the model is most applicable to pure dielectric liquids. 

We assume that, following irradiation and subsequent thermalization 
of the electrons, the dielectric medium can be treated as consisting of 
isolated electron-ion pairs. Under this assumption the recombination at 
early times can be described by considering a single isolated electron- 
ion pair. The restriction of the theory to the case of isolated electron- 
ion pairs, although an oversimplification, is still of pr ictical interest 
since it should apply reasonably well to ionization produced by low LET 
(linear energy transfer), high-energy radiation. The motion of the pair 
of ions of opposite signs is governed both by their mutual coulomb attrac- 
tion and random walk in the dielectric medium.  It is assumed that the 
random walk can be approximated by the diffusion equation. Einstein1 

showed that the diffusion approximation is valid when the times of inter- 
est are much larger than the relaxation time characteristic of Brownian 
motion. This result was obtained by Einstein from the general Fokker- 
Planck2 equation for the probability distribution function in six-dimen- 
sional phase space. This equation is not separable in position and 
velocity unless the time intervals of interest, At, satisfy At » Dm/kT 
where D is the diffusion coefficient of the particle of mass m, k is the 
Boltzman constant, and T is temperature.2 The time Dm/kT is the time 
required for the particles to traverse a mean free path of the order of 
(D2m/kT)V2. The diffusion equation was generalized by Smoluchowski3 

to include the effect of an external field.  In order for the equation 
to apply to configuration space independently of velocity space it is 
required that the Maxwellian velocity distribution not be seriously 
affected by the external lield. This requirement is met if the varia- 
tion of the fo~ce F(r^is small over a mean free path.2 The problem of 
the isolated electron-ion pair meets this condition provided the elec- 
tron-ion separation is not too small, since the variation of the coulomb 
force over the distance (D2m/kt)V2 becomes too great at small separations. 

Einstein, A. Ann. Physik 17, 549 (1905); 19, 371 (1906) 
''chandrasekhar, S., Rev. Mod. Phys. 1!5, 1 (1943). 
3von Smolujhowski, M., Ann. Physik 21, 756 (1906). 
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I 
Onsager*4 was the first to solve the Smoluchowski equation for a 

pair of ions in a dielectric medium. He derived the result that, in jj 
the steady state, i.e., in the limit t ■+ °°, the probability that the | 
pair will escape mutual neutralization is given by exp(- rc/ri), where | 
rc = e

2/ekT and r^ is the initial separation of the electron and posi- j 
tive ion. However, the Onsager theory is a steady-state Lheory and | 
does not describe the dynamics of the process; i.e., how fast or slow J 
the steady-state value is obtained. j 

Recently there has been an increasing interest in obtaining the | 
time-dependence of the evolution of the system to the steady titate. 
Attempts have been made to obtain approximate solutions for finite i 
times. The most recent analytical approach is the work performed by J 
Mozumder.5 He used the method of "prescribed diffusion." In this I 
method a solution is first obtained to the simple diffusion equation 
which results when the force term is set eq-ial to zero in the Smol- 
uchowski equation. It is then assumed that the solution to the 
Smoluchowski equation can be approximated by multiplying the solution 
to the diffusion equation by some unknown function of time. This 
assumed solution is then substit ited into the original Smoluchowski 
equation and a solvable equation for the unknown function of time is 
obtained. The first attempt to solve the Smoluchowski equation directly 
by numerical methods, without resorting to any analytical approximations, 
v»as that of Ludwig.6 He used an analog computer method. By noting the 
similarity of the Smoluchowski equation with the differential equations 
describing time and position dependence of a dc voltage along a one- 
dimensional tapered electric line, he was able to set up an analog 
method for the solution by identifying the parameters of the Smoluch- 
owski equation with voltages, resistances, and capacitances in the 
equivalent electrical circuit. The actual solution, however, was 
carried out using a digital computer program ECAP (Electronic Circuit 
Analysis Program) which is specifically designed for electric circuit 
analysis. By comparing his results with those obtained by Mozumder, 
using "prescribed diffusion," Ludwig found that his results predicted 
a faster rate of recombination than predicted by Mozumder's method. 
Quite recently Abell et al7 have applied a Laplace transform method to 
the numerical solution of the Smoluchowski equation. Their primary 
interest was in deriving the scavenging probability, however, the 
inverse Laplace transform of their solution also gives the time- 
dependent solution. Their results appear to be in accord with 
Ludwig'e results and demonstrate that the numerical solution is in 
good agreement with the prescribed diffusion method at long times. 

In addition to extending the work of others on the neutraliza- 
tion of an isolated electron-ion pair, we consider the effect of the 
presence of a solute.  In this case the neutralization process competes 

^Onsager, L., Phys. Rev. 54_, 554 (1938). 
5Mozumder, A., J. Chem. Phys. 48, 1659 (1968). 
6Ludwig, P. K., J. Chem. Phys. 50, 1787 (1969). 
7Abell, G. C, A. Mozumder, and T. J. Magee, J. Chem. Phys. 56_, 5422 
(1972). 



with the possible; reaction of one of the charged species with the solute. 
This reaction with the solute is commonly referred to as charge scavenging 
and the solute itself is called the scavenger.     Recent studies8"12 of the 
neutralization and scavenging of electrons  following radiation-induced 
ionization in liquid hydrocarbon have involved the determination of the 
product yield as  a function of scavenger concentration.    Theoretical work5'7'12 

has  followed the procedure of either obtaining approximate solutions; to 
the Smoluchowski equation  for the time dependence of neutralization and then 
relating the LapJace transform to experimental scavenging studies, or 
numerically solving the Laplace    ransformed Smoluchowski equation.    Good 
quantitative  agreement between t aory  and experiment on scavenging studies 
was recently obtained by Abell and Funabashi13 using the  latter method, 
we hav5 taken another approach.    We have compared numerical solutions of 
the tine-dependent Smoluchowski equation directly with time-dependent 
conductivity data that have  recently been obtained in the nanosecond t:me 
regime.1"'    When electron scavengers  are present,  a new low-mobility charge 
species,  the ?nion,  is created which contributes to the conductivity at 
later times.    Good agreement between theory and experiment is obtained. 
Also,  our solution to the Smoluchowski equation should be valid at early 
times whsre the  "prescribed diffusion"  approximation used bv Kozumder5 

is not appropriate and is  in excellent agreement with Mozumder's result at 
long times  — the  region of validity of the  "prescribed diffusion" approximation 

In section 2 we present the matnematical  formulation of the problem. 
It is shown how the Smoluchowski equation is modified to include th*= 
effect of scavengers on the elactron distribution,  and a brief descrip- 
tion of the numerical method of solution is presented.    As the electrons 
are trapped by the scavengers,  a new negatively chare,sd species   (the anion) 
is created.    The equation governing the probability density of the anions 
is presented, and we indv.ate how the coupled partial-differential equa- 
tions governing the electron and anion time-dependent distributions are 
solved. 

In section  3 we present the solutions and discuss the results. 

MATHEMATICAL FORMULATION 

We assume  that there are two isolated particles interacting via the 
coulomb force in a dielectric medium.    One particle   (the positive ion)   is 

Chem.  Phys.   56. 
Warman and R.  H.  Schuler, j. 

bMozumder, A., J. Chem. Phys. 48, 1659 (1968). 
7Abell, G. C., A. Mozumder, and J. J. Magee, J 
6Rzad,  S.   J.,  P.   P.   Infelta, J.  M 

3971   (1970). 
9Rzad, E. J. and J. M. Warman, J, Chem. Phys. 49, 2861 (1969). 

:cRzad, S. J., P. P. Infelta, J. M 
5014 (1969). 

5422 (1972) . 
Chem. Phys. 52, 

Warman and R. H. Schuler, J. Chem. Phys. 50, 

1 1 Thomas, K., K. Johnson, T. Klippert and R. Lowers, J. Chem. Phys. 48, 1)08 (1968). 
!iHummel, A., J. Chem. Phys. 42, 4840 (1968). 
riAbeH, G, C. and K. Funabashi, J. Chem. Phys. _58, 1079 (1973). 
1''Conrad, E. E. and J. Silverman, J. Chem. Phys. 51_, 450 (1969); See also E. E. Conrad, 
Ph.D. thesis, University of Maryland 1970 (unpuolished). 
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assumed to be fixed at the origin and the other (the electron) is free to 
undergo Brownian motion with respect to the first ion. We represent ljy 
PQ(r,t) the probability density of the diffusing particle so that P0ir,t) 
r2 drdfi is the probability of finding the two particles separated by a dis- 
tance between r and r + dr in the solid angle between Ü  and ü + du  at time 
t. The Smoluchowski equation for the probability density P0(r,t) of the 
electron can be written as 

9P_(r,t) 
—^  = D{V2P0(r,t) - (e/kT) V[E Pp(r,t)]} (1) 

->• 
where E is the electrostatic field and D is the relative diffusion coef- 
ficient. In the presence of scavengers an additional term, -ksCsP(r,t), 
must be added to the right side of equation (1), where ks is the rate of 
scavenger reaction and C§ is the concentration of scavengers: 

dPi
dl'

t]     = D{V2P(f,t) - (e/kT) V-[E P(?,t)]} - A P(r",t),   (2) 

where we have set X = ksCs.  It is easily shown that P and PQ are related 
by 

P(?,t) = P0(rYt) exp (- At). (3) 

Since E is derivable from a potential, U(r) = - e2/er, which is a 
function only of the distance between the electron and positive ion, the 
equation for P(r,t) in the presence of scavengers becomes 

9P(r,t)  = 
9t 

A P(r,t), (r ^ o) ,      (4) 

where we have set rc = e
2/ekT. We neglect depletion of the solute by 

treating A as a constant. This approximation effectively replaces the 
second-order scavenging process by a pseudo-first-order process. 

Equation (4) was solved numerically by converting the differential 
equation to a system of difference equations for the variables r and t. 
The integrals were performed with the aid of an IBM 360/91 computer using 
a fourth-order Runge-Kutta integration technique. Double-precision 
arithmetic was used throughout the calculation to maintain numerical 
stability out to long times. To avoid the problem (discussed in the 
introduction) of small separations of the electron-ion pair, we arbi- 
trarily introduce a "reaction radius" r as Ludwig (ref 6) has done in a 
similar calculation. Outside this radius the Smoluchowski equation is 
valid. For separation distances less than r0 it is assumed that the 
electron-ion pair is neutralized. The choice of r0 is somewhat arbitrary. 
We follow Ludwig and choose r0 to be approximately that separation for 
which the change in potential energy, when the ions approach by one mean- 
free-path, is equal to kT. For our assumed value of dielectric constant 

bLudwig, P. K., J. Chem. Phys. 50, 1787 (1969) 

% 
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e - 2 and a mean-free-path of 2 Ä, the resulting rQ is about 25 A. Ludwig 
used a value of 28 A in his calculations.  In order to initially correlate 
our results with his, we also chose the value 28 A for ro We later found 
that the results are quite insensitive to this choice, since much smaller 
values of r0 led to approximately the same results. 

The boundary conditions on the probability density are therefore as 
follows: 

P(r0,t) = 0, P(»,t) = P(°°,0) , 

i.e., very far from the origin, the diffusing species remains at the 
initial value of concentration. For practical calculational purposes 
"<*>" is simply taken to be some spacial distance from the origin where 
P(r,t) * 0 (since in our calculations we shall consider only initial 
distributions for which P^.O) = 0).  Since the diffusion term causes 
a gradual broadening of the probability density with increasing time, 
the value of r for which P(r,t) ~  0 must necessarily increase with 
time. This is accounted for automatically in the program and will be 
made more quantitative when we discuss the stability criteria used in 
the calculation. 

A variety of initial conditions were considered.  However, the 
one for which the final correlation with experiment was made is 

'5) 

P(r,0) = 
6(r-ri) 

4irr2 
(6) 

For this initial condition it is assumed that the diffusing particle 
(ehe electron) is located a distance r^ from the positive ion at t = 0. 
Calculations for initial gaussian distributions were also performed; i.e. 

Pvr,0) = 

A exp [-(r-ri)
2/2o2] 

47T3T 
C) 

where A is a normalization constant chosen such that 

no 

_/p(r,0) 4irr2dr = 1 (8) 

and a is a measure of the "width" of the distribution.  It should be 
noted that the delta function distribution, equation (6), automatically 
satisfies equation (8). The value chosen for r^ was 80 A and is based 
upon calculations performed by Mozumder and Magee. 3 This value for r^ 
also gives a value for the Onsager steady-state solution (t -*■ °°) which 

15Mozumder, A. and J. L. Magee, J. Chem. Phys. 47, 939 (1967). 
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is in good agreement with late-time experimental results on n-hexane 
(ref 14). 

The quantity of direct physical interest is the fraction remaining 
unneutralized at time t, 

r m 

f(t)   =       I 4Trr2 P(r,t)dr 

00 

/ 47ir2 P(r, t)dr. (9) 

o 
According to the normalization specified by equation (8), f(0) = 1. 
As time increases, f(t) decreases until it approaches the Onsager 
steady-state value exp (-rc/r^) as t -> °°. 

Before solving equation (4) the dimensionless variables x = r/a 
and To= (D/a2)t were introduced, where a was chosen for convenience to 
be 4 A. The diffusion coefficient D was taken to be approximately 
characteristic of n-hexane, D = 5 x 10"3 cm2/sec. To start with, a 
mesh size Ax = I was used. To check convergence with this mesh size, 
values of Ax = 0.5 and Ax = 2 were tested.  Good agreement was round 
between the results using different mesh sizes, although the value 
Ax = 2 appeared to be too large.  The value Ax = 1 was therefore used 
at the starting mesh size. 

We shall use the term "profile" to characterize the array of values 
P(Xj_) corresponding to the values of the probability density at the 
points x^ at a given time T. This profile is initially (T = 0) taken 
to be either a delta function or a sharply-peaked gaussian.  As time 
increases, this profile tends to become smoother (due to the diffusion 
term) and eventually peaks near the "sink" at rQ (due to the attraction 
to the positive ion). The fact that the profile becomes smoother with 
time causes problems in the form of round-off errors by the computer 
operations on the difference equation;",  Ir left uncorrected, these 
round-off errors eventually lead to totally unmeaningful results. To 
circumvent this problem the mesh size had to be increased periodically 
when the profile began to smooth out. This was done without changing 
the total number (50) of mesh points.  This increase in mesh size with- 
out changing the total number of Doints used had the effect also of 
automatically taking care of the problem referred to earlier —- namely, 
that the value of r for which P(r,t) z  0 must necessarily increase with 
time. 

An option was built into the program to make it possible to double 
the mesh size either at times specified on input cards or at times deter- 
mined automatically by the relation 

A T   > i^li 
max -  2  ' (10) 

14Conrad, E. E. and J. Silverman, J. Chem. Phys. 5JU 450 (1969); See also 
E. E. Conrad, Ph.D. thesis, University of Maryland 1970 (unpublished). 
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where A Tmax is the current value of the maximum step in T being used in 
the integration subroutine and Ax is the current spacial mesh size. This 
relation is equivalent to the relation 

At 
(Ar) 
2D (11) 

in real space and time.  It has been shown16 that, for the diffusion equa- 
tion, it is impossible to choose At and Ar arbitrarily if a stable solution 
is to be obtained. The error is bounded if 

At < (Ar)" 
2D 

(12) 

Thus, we cannot increase At arbitrarily without also increasing Ar. 
The stability criterion is automatically taken care of by the doubling 
procedure. 

In the presence of impurities acting as electron scavengers not 
only is there an additional process competing with neutralization for 
the removal of electrons (equation (2)), but a new species is created. 
This new negatively charged ion (anion) is the impurity with a trapped 
electron.  In the simplified model we are considering the equation for 
the probability density Pft(r,t) of anions is 

°P. 

3t 
= D' 

3r2  y r ' r2/ 3r 
+ AP(r,t), (r f  0) (13) 

where D = D, + Dft. DQ  is the diffusion coefficient for the cations and 
D is the diffusion coefficient for the anions.  It should be noted that 
this equation is very similar to equation (4) except for the presence of 
Vie  term + A P(r,t), where P(r,t) is the electron probability density 
determined by equation (4). Also, since at t = 0 there are no anions 
present, the initial condition is 

PA(r,0) - 0. (14) 

The boundary conditions on P.(r,t) are the same a. those for P(i,t), 
namely 

Vro't} = V00'0 = °- (15) 

It is possible to first solve equation (4) for P(r,t) and store these 
data for future input to equation (13). However, this technique is 
laborious and it was found to be more efficient to solve equations (4) 
and (13) simultaneously. 

16 Smith, C.  D., "Numerical Solution of Partial Differential Equations," 
Oxford University Press, New York and London, 1965. 

10 
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Tiie fraction of anions present at any time t is given by I 

fA(t)  = jW PA(r,t)dr. (i6) j 
r° 1 

J 

The fraction of cations (positively charged ions) is just 

fc(t) = f(t) + fA(t), (17) 

by charge conservation. 

3.  RESULTS AND DISCUSSION 

Figure 1 gives results of solutions to equation (4) for the case 
A = 0 (no charge scavengers). Shown are plots of the spacial profiles, 
at various times, of PQ(r,t) using D = 5 x 10~3 cm2/sec and r±  = 80 A. 

Initially, the distribution is a line at 80 Ä (as a consequence of the 
assumed delta function distribution at t = 0). As time increases the 
electron distribution broadens due to diffusion and peaks preferentially 
toward the origin as a result of the attractive coulomb force. Of more 
direct physical interest is the radial probability distribution, 4iTr2 

P(r,t), which is obtained by integrating P(r,t) over all angles. The 
quantity 4iTr2 P(r,t)dr represents the probability of finding the elec- 
tron at a distance r from the parent ion in the interval dr at time t. 
Figure I  shows the radial probability distribution at various times. 
Although the curves in figure 2 are close to gaussian in nature, it 
should also be noted that the tail at large distances from the oriqin 
increases with increasing time leading to the finite probability of 
the ultimate escape of the electron from the positive ion. 

The fraction of electrons remaining unneutralized as a function of 
time is shown in figure 3 for three different solutions. Curve 7. i * 
the result of Mozumder's prescribed diffusion approximation for the case 
of an initial delta-function distribution. Curve II is our result for 
the same initial distribution. Curve III is our result for a gaussian 
distribution (equation (7)) centered at 80 A with o = 20 Ä. As can be 
seen, at early times, our solution predicts a much faster rate of decay 
for the geminate pair, the half-life for neutralization (-1.8 x lO'^sec) 
being about half that predicted by Mozumder's prescribed diffusion model. 
Curves II and III differ significantly only at the earliest times, 
indicating that the results are not very sensitive to the type of initial 
distribution chosen. 

Our results for the time-dependent decay of the geminate pair in 
the absence of scavengers are in accord with those of Ludwig when the 
same parameter values are used. However, his solution was restricted 
to early times and was not extended into the time domain where the pre- 
scribed diffusion model could be tested. We have also solved the case 
r; = 60 A, which was the case considered by Abell et ui, and our results 

11 
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Figure 2. Radial probability distribution as a function of distance 
from the positively charged ion at various times. 
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Figure 3.  Fraction of electrons remaining unneutralized as a function 
of time. Curve I is Mozumder's prescribed diffusion 
approximation for an initial delta-function distribution 
at 80 A; curve II represents the present results for the 
same initial condition; curve III is our result for a 

o o 
gaussian distribution centered at 80 A with o = 20 A. 

tor the time-dependent decay of the geminate pair agree with their work 
when proper account is taken of the different time scaling due to the use 
of different diffusion coefficients. 

The effect of adding scavengers to the system is shown in figure 4 
where a series of curves is shown for various values of A = kgCs. Figure 
5 shows results of our solution over a much greater time domain. For the 
case of no scavengers (A = 0) , the upper dashed curve is the prescribed 
diffusion result of Mozumder and the solid curve is the result of the 
present work. The two solutions coincide (deviations are less than one 
percent) for t > 10~8 sec, and both approach the Onsager steady-state 
solution as t ■>•. At early times our solution predicts a much faster 
rate of decay as mentioned previously. The lower solid curve represents 
the solution in the presence of scavengers (A = 2 x 107 sec-1).  This 
curve follows the A = 0 solution out to t ~ 10-8 sec and then begins to 
fall off very rapidly, reflecting the onset of scavenging. For large 
times F(t) = [F(°°) + At~l/2] exp !-At) , which is almost a pure exponential 
decay for large enough times. 
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Figure 4.  Fraction of unneutralized electrons, remaining as a function 
of time for various levels of scavenger concentration.. 
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Figure 5. Fraction of electrons remaining unneutralized and 
un-scavenged as a function of time. In the absence 
of scavengers (A = 0) the upper dashed curve is the 
prescribed diffusion solution to the Smoluchowski 
equation and the solid curve is our numerical 
solution. The lower solid curve is our solution 
in the presence of scavengers. 
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In order to compare the theory with experimental conductivity data, the 
presence of the anions and cations must also be taken into account. The 
evaluations of equations (9), (16) and (17) for the decay of electrons, 
growth and decay of anions, and decay of cations are shown in figure 6 for 
the value A = 2 x 107sec""'. The actual contribution that these three charge 
species make to the conductivity is given in figure 7, where we have 
plotted the fraction of each charge species present weighted by the ratio 
of mobility to the electron mobility. We have taken standard accepted 
values17 for the mobility of the cation (UQ  = 6.8 X lO-'"* cm2/V-sec) and 
anion (uA = 1.3 x 10"

3cm//V-sec) for n-hexane and have used the previously 
assumed value cf 0.2 cnr/V-sec for the mobility of the electron. Thus, 
the relative contribution from the anion is (U^/u^)   fA(t) = 6.5 x 10 
fA(t) and the relative contribution from the cation is {UQ/UG)f^(t) = 
3.4 x 10~?fc(t). The solid line gives the total contribution of all 
three charge species. For the chosen values of D and >, the theory 
agrees well with the experimental data (indicated by the circles) of 
Conrad and Silverman (ref 14) for the first stage decay of conductivity 
.in n-hexane following exposure to a flash X-ray pulse. The value for 
X  corresponds to a lifetime of 50 nsec, the value reported by Conrad and 
Silverman for the early first-order decay of the condrctivity. 
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Figure 6.  Decay of electrons and cations and growth of anionr, as 
function of time for \  - 2  x 10  sec" . 

17Hummel, A., A. O. Allen, and F. H. Watson, Jr., J. Chem. Phys. 44, 
3431 (1966). 

14Conrad, E. E. and J. Silverman, J. Chem. Phys. 51, 450 (1969); See also 
E. E. Conrad, Ph.D. thesis, University of Maryland 1970 (unpublished). 
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Figure 7.  Fraction of electrons, anions, and cations remaining 
unneutralized weighted by the ratio of the mobility 
of each species to the electron mobility.  The solid 
curve represents the sum of the three contributions 
and the circles represent the conductivity data of 

Conrad. 

We have made no attempt to fit experiment in the region following 
the first stage exponential decay, since no provision has yet been made 
in the theory to include homogeneous interaction between all the cations 
and all the anions (bimolecular recombination).  The conductivity observed 
between the exponential decay stage and the onset of nearly pure homo- 
geneous second-order recombination (t~ 100 ysec) is governed by the 
remaining cations, anions (resulting from scavenged electrons), and, 
possibly, thermally excited electrons. The discrepancy between theory 
and experiment in this time region would only be increased if bimolecular 
recombination were included in the theory.  The measured conductivity 
does not exhibit simple bimolecular recombination in the time range 
10-100 usec. The data suggest that a more mobile species exists in 
this time range and that a transformation occurs from this species to 
the slower measured species. Since the more mobile carriers have not 
been measured yet, we have used the published mobility values. Higher 
mobilities for the anion and cation would lead to better agreement 

between theory and experiment. 
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It is of interest to speculate on how the model presented in this 
report could be applied t.u the solid dielectric. The growth of trapped 
charge in the solid dielectric should be analogous r.o the growth of 
anions in the liquid. The only differences would be that the charge 
trapped in the solid is immobile until thermally released, and the time 
seal a should be shifted to n.uch shorter times in the trap-laden solid 
relative to the reasonably pure liquid considered here. The conductivity 
in the solid at observable times is probably due to trap-modulated motion 
of the electrons, and temperature is probably an important ingredient in 
any theory of the solid dielectric. Temperature should also be important 
ir any theory of the intermediate time stage in the liquid dielectric 
which, as mentioned above, we have made no attempt yet to explain. 
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